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Turbulence in Magnetised Plasmas

nonlinearity of small disturbances on an equilibrium
T three wave interactions
T energy transfer, cascading
incompressible turbulence models
T simple fluid turbulence, role of pressure to maintain incompressibility
T cascades of energy, vorticity (“enstrophy”), role of vortex tubes in 2D and 3D models
T 2D MHD turbulence, role of magnetic field to maintain incompressibility
simple drift effects in a magnetised plasma with gradients
T dissipative coupling, effect on cascades
T evolution of spectra, physical meaning of cascades
T varying properties of nonlinear couplings

the transport problem



Various Nonlinear Effects

e rapid space/time variation of parameters (e.g., shocks, isolated jets)
e quasilinear interaction between small waves to alter the background
T each wave (k) beats against itself (k')

T background is wavenumber zero

k+k' =0

e turbulence — incoherent interaction with many wave combinations
T each wave (k) is forced upon by two other beat waves (k’ and k)

T many distinct pairs {k’, k”} with no relation to k

k+k'+k”"=0

many degrees of freedom, incoherent, statistical




Small Disturbances on an Equilibrium

e ordering in general — gradients multiplied by constant parameters

A <L, — (pe +D)V-v — pV-v

e background may be inhomogeneous (define x as down-gradient)

Vpe — —56 Vi where Ve =—L,Vlogpe
i
e “mixing level” disturbances
N pe A
Vie ~ Vpe = 2~ 22 <1
Pe LJ_

e nonlinearity remains in advection effects — a nonlinear term and a linear forcing term

C

B

ViV (pe + Pe) = =b - VEXVp, — 2= v where 0% = —b-VéxVz

B L,

keep nonlinearities where quadratic under gradients




Incompressible Hydrodynamics

start with MHD, neglect magnetic field

ov 1
(E+V°VV> ——;Vp

take curl, treat p as constant, neglect V - v

<% +V-V> Vxv = (Vxv) Vv

pressure submerges — only role is to maintain incompressibility

let %V v=20 then Vip=—-V-(pv-Vv)

leads to “projection methods” for computations



The Cascade to Smaller Scales

the “eddy mitosis” model: vortices sheared apart, into smaller ones about half the size

assume: energy input (“stirring”) and loss (“dissipation”) occur in well separated ranges in scale
o situation of “high Reynolds number” meaning turbulent mixing > viscous or collisional diffusion

at scale m, have kinetic energy, E,, = v2/2, and “eddy turnover time” inverse to vorticity, (kv),

during the mitosis process, energy is conserved — power law

(kv)n—l E,_1= (kv)n E, kn — 2kn—1

in this “inertial range” one finds the Kolmogorov scaling law

(Ep/ky) o< k573 density of states kn

the vorticity increases towards smaller scales — enstrophy is produced

(kv),, o< k2/3



Enstrophy in Incompressible Hydrodynamics

e Fuler equation in 3D

<% +V-V> Vxv = (Vxv) Vv

e note mean squared vorticity (“enstrophy”) is not generally conserved

88—‘/;/ + V.- (Wv)=[(VxVv)(VxV)]:[VV] where W = %(VXV) (Vxv)

e enstrophy is transported by the velocity, but grows if ...

T the velocity has a component along the vorticity, and also diverges in that direction

vortex tube stretching in 3D




Vortex Tube Stretching

type of motion necessary to entrophy production

77



What You Can Learn Just From Equations

e energy conservation, energy transfer to smaller scales
o statistical redistribution, with more states available at smaller scale
o enstrophy must increase

e geometry: enstrophy increase is described by a definite quantity
o this quantity can only be positive if there are vortex tubes which are stretched by the flow

Kolmogorov cascade process must proceed through vortex tube stretching

e the above is found merely by examining the properties of the equations
o actually solving them was not necessary



2D Incompressible Hydrodynamics

e in 2D one must have VXv L v ... let § be the normal to the plane

V-v=0 — v = 8§x V) — (Vxv) =8V21

e find the 2D Euler equation

%_5:+V.vgzo with  Q=V2y and v =8xVi

e hence the enstrophy (W) is conserved, along with the energy (U)

02 oW
let U—ﬁ then a—U—l—V (Uv)=0
VT © ot -

both are conserved with same flow field




The Importance of Two Dimensionality

e in fluid dynamics, 2D can be forced by
o strong rotation (Proudman-Taylor theorem)
o domain anisotropy (the “thin atmosphere” situation)

e in plasma dynamics, 2D is usually forced by
o strong background magnetic field (“guide field”), with Alfvén velocity v 4
o specific energy density of reservoir < v%
o main reason: “low beta” meaning 7T, < Mivi hence B, = 4mp./ B? « 1

e in 2D, enstrophy is conserved; therefore

Kolmogorov cascade to small scales cannot occur in 2D




The Three Wave Interaction

start with the 2D Euler equation
012

el VO =
5 +v-V 0
define Fourier decomposition
1k-x kZde —1k-x *
=3 ekxy, wsz o ey P = Ui
k

Fuler equation in k-space

o _, ]{ K2d%x

ot yroal Y o> e e (k) x (k") Qe
i

_k/ _kll

three wave condition for the integral not to vanish

k+k'+k"=0



Equations for Beat Waves

e Fuler equation
o) L,
atk =22 58 (1xK) (et = Qi)

_k/ _k//

e for beat waves use symmetry

3. (kxk') = 5§ (K'xk") =5 (kK xk)

e define coupling matrix

Okk’ = S - (ka/)

DN |

find beat wave equations (use permutation among k, k', k" triangle)

o9
P Chae (Qrertrore — Do)
O

8tk = Cxw (Q_x¥_xr — Qerp_y)
an//

5 = Cxk’ (Q_wy_x — Q)



Energy Transfer

e find energy transfer by multiplying by —x and adding complex conjugate

oU.
£ — 201 Re [k Qe Ve — i Qx|

ot
OUy

8: = 2Ckk Re [ Qg — Ywrhr Qx|
OUyr

8:5{ = 2Ckk Re [ Qb — Y by Q|

e identify transfer channel as terms with opposite sign in one pair of equations, e.g.,

Ty (k «— k') = 2Ci Re [t Q]



Enstrophy Transfer

e find enstrophy transfer by multiplying by 2 and adding complex conjugate

oW,
k — 2Okk’ Re [kak’ Qk” — Qka’¢k”]

ot
OWy

8tk = 2Ck Re [Q i Qe — e ey
OWyerr

8: = 2Ckk Re [Qur bk Qi — e ethrer |

e identify transfer channel as terms with opposite sign in one pair of equations, e.g.,

TW(k — k/) — 2Okk’ Re [_Qka’@bk”]



The Dual Cascade

write energy and enstrophy transfer
Ty (k — k') = 2Cu Re [—uthw Q] = 2Ckw Re [(k")*¢uthier rer ]

Tw (k — k') = 2Ci Re [~ Qe Y] = 20k Re [~k (k') * b hrer |

note that given a definite sign of the triple correlation [¢y i 1k~ |, these are opposite!
statistically, enstrophy goes to higher k, hence smaller scale, due to the larger k-dependence
T faster mixing, spectral redistribution

hence energy goes preferentially to lower k, hence larger scale

2D inverse energy cascade

“maximum entropy” stationary states for discrete systems show W ~ k and Uj, ~ k=1



A Passive Scalar

density fluctuations follow incompressible equation

op -
E—FV-Vp—O

passive scalar: p is advected by the flow, but effects no back reaction
in k-space the density equation is the same as for the vorticity
“fluctuation free energy” or “entropy” is defined by squared amplitude

hence the free energy transfer has the same form as for enstrophy

flow energy to large scales, free energy to small

very high correlation Q - p in forced/dissipative turbulence, even with no coupling effects



Incompressible MHD

constant parameters, homogeneous background, keep only quadratic nonlinearities

ov B? B-VB
p(a—i—v-Vv)——V(p—Fg)—F e

set B = Bb and u = v/v4 with v4 = B?/4mp

1 Ou 1 B?
= . — 4 - :
vA8t+u Vu BQV(Wp—l—2>+b Vb

incompressible MHD kinematic equation

ia—b—l—u-Vb:b-Vu
vq Ot

define “Elsasser variables” ux =u+b

find passive advection, but coupled through advector (note V-v = 0 < B? not p, for 8 < 1)

1 6ui 1 B2
= Vur=——V |4 -
vs Ot +ux - Vug 52 ( T + 5 )



2D Incompressible MHD

constant parameters, homogeneous background, keep only quadratic nonlinearities

ov B? B-VB
p(a—i—v-Vv)——V(p—Fg)—F e

take curl, use 2D to avoid (Vxv)-v and J-VB

p(g—l—V'v>VXV:1B'VJ
ot c

define ExB velocity and vorticity, parallel current, parallel gradient

pc o

C

V:VE:—B2

find correction to Euler vorticity equation

012
E—FVE-VQZI)-VJ”



applications of 2D incompressible MHD

usually formulated with Elsasser variables: uy =u=+Db

define velocity and magnetic field

u=58xV¢ b = —-8xV

resistive (1), viscous () MHD equations in Alfvén normalisation (0/0t < v 4 V)

0
% +uy - Vuy =-VI+4+ (px n)V3 us

incompressibility potential
VI +V - (uz-Vuy) =0
this dynamical system is commonly used in astrophysics (e.g., reconnection, dynamo)
for turbulence within an MHD stable equilibrium, the drive source is Vp
T coupling processes specifically in the electrons p. <+ ¢ become significant

T and the MHD model cannot cover the physics ...



Dissipative Coupling

beyond MHD), density is not passive, but coupled through parallel currents to the ExB vorticity

Ohm’s law, parallel, keeping electron pressure gradient

1

Ne€

—E) =V )0 =—Vp. —nJ]

parallel compressibility enters electron pressure equation (advection is by the ExB velocity)

aﬁe ~ Te T
: e e) — J
o +vg V(p +p ) . VH [

appears as parallel diffusivity but couples to 5

aﬁe ~ Te 2 ~ -~
-V e e) — —V ( e — Tle )
ot + Vg (p —|—p ) ne€27’]” [ P n 6@5

note that Vp. ~ neeV”g is the usual situation in gradient driven turbulence

T it cannot be treated by the single luid MHD model



Dissipative Coupling Model for ExB Turbulence

electrostatic approximation for w < k vz

E, =-V,¢

electrostatic potential is stream function for ExB velocity

C C
= =5BxV¢ Vx vy =0b

VE B

vorticity equation is the same as for MHD, with parallel gradient reckoned against the background

oS
— -V = J
By +vg -V VH I

changes are in the dissipative Ohm’s law ... and in the electron pressure equation

1 Ope 1T
ViPe = V| Sr V- Vpe = V|

mdi = -

with J)| as a function of p. and ¢, the system is closed



Dissipative Coupling Model, properly 2D

with no magnetic fluctuations, V is slightly cheating
actual dynamics is 3D, perp incompressible, J; dynamics along B to provide coupling

answer: model VH with a positive coupling constant, with units of frequency

D=t} which with 7 = 0.51-%¢  becomes D =
Ne€n) Ne€ 0. 51V€

where V., = /T, /m. is the electron thermal velocity

scale fluctuations as 65/ Te and pe/pe, use p = n;M; and n; = n,

resulting model is called “Hasegawa-Wakatani”

2N 1. ~ Y
c Mile <Q+VE-V>V26¢ D(g—%>

e?2 B2 ot

0 e P ed
ot D

ki



Dissipative Coupling Model, notes

e we've used a static, resistive, current
t neglects magnetic induction « effects of 0B /0, fails if w ~ kjjva
e we've still used the ExB velocity for both ions and electrons, perp to B
7 for MHD the only restriction is that electrostatic form requires w < kv

T in general we require cold ions to use the ExB inertia term

Ne€V | ¢~V p. <V | p; requires 1; < T,

e we’ve assumed isothermal electrons in the p, equation
T constant mass density is still OK if p. < pe

T generally, Te is required but adds no qualitative changes, hence neglected in simplest model

use of cold ions allows neglect of finite gyroradius effects and still reach down to drift scale
e we’ve neglected sound wave effects, reasonable if kL, <1

e note that to compare NUMBERS to an experiment requires absolute complexity



Scales in the Dissipative Coupling Model

e the Hasegawa-Wakatani equations: dissipative coupling and gradient forcing

207 Y ~ oy
AMT, (QHE,V)W@:D(&_@)

e2B?2 \ Ot LT pe 1o

0 Pe Pe  ed
il . e V1 =D = -2
<8t + vy V) ) +vg - Viogp <p€ T€>

e introduces the drift scale p,, defined by

p2 = AM;T, /e’ B
e gradient forcing gives the time scale L /cg, from the sound speed ¢ and profile scale length L

Cy = = Ly =|Viogpe|

e most interesting effects come from the varying properties of the two nonlinearities ...



Computational Dissipative Coupling Model

normalise in terms of ps and ¢s/L |, scale variables by a factor of § = ps/L

6 — 07 ed/T. P 07 e /pe Q67 p2VR (ed/T.)

only parameter is D «— DL /¢

0

(awE-v)ﬂ:D(p—qﬁ)

0 0
(a+VE'V>p:—a—gyb—|—D(p—¢)

ExB advection defined in terms of a Poisson bracket structure, e.g.,

_0¢0p D¢ Op
- Oxdy Oy Ox

Ve -V = [¢,D]

linear forcing terms are the dissipative coupling (D) and the gradient drive: v = —0¢/0y



Hlustration of Dual Cascade

periodic domain, (207 ps)?

examine decaying turbulence started in middle of spectrum (set gradient drive to zero)

Pic(0) = ¢1c(0) = ag [1 + (k2 /0.32)4] "/ &©

T random phase ©

T ag chosen such that rms amplitude is 3.0
test “hydrodynamic” limit D =0

T Euler equation for €2, passive advection for p

note in some of the figures label for p is n.



e Time evolution of the hydrodynamic model

amplitudes damping
14* ‘ ‘ ‘ ////‘,/—“—; OOOO \"\‘V ‘ ‘ ‘
12 =
A —0.010

10 - b -
8 N —0.020
6% |
= B - B

A = U, 0.030
2 U, :
oL T — | | —0.040 | | | |

0 10 20 30 40 t 50 0 10 20 30 40 1

e initial decay of half squared amplitudes of p and ¢, denoted A,, and A,, respectively
T also ExB energy (Ug) and fluctuation free energy (U,,)

e energetic losses (mostly in p due to the direct cascade) for three values of the resolution

o0



e Amplitude spectra in the hydrodynamic model, for p, ¢, and 2 (’n’, ’p’, and 'w’)

t = 0.000 t = 9121 t = 2392
spectra spectra spectra

| 100 | | 10 | |

| 1077 | S 1077 | L
10! 10° 101;C 107 10! 10° 101;C 107 107! 10° JLolk 107

e times of the snapshots are t = 0 (left), ¢ = 9.8 (center), and t = 24 (right)

e the spectra evolve rapidly apart due to the differing cascade dynamics for p and €2 versus ¢

demonstration of bi-directional spectral transfer
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e Evolution of the disturbances for the hydrodynamic model (note n. = p)

t = 0.00
| f@fﬂéﬁw 31 3\3@3@@ 31 Q
SHAAND STAN e e
%P@ %P@ e W8 I K
CoR Rede)| * leianile
5.6 ONCEpuEE  OpiSonin
B x
)

o

@ &@ o 2 O

TEe o Do ulhg e
Ta2e, on| | Wtk
31 @A %S//% 31 @A %2//% e
—34 = 1.69 31 —34 =163 31 —34 =

e note that the morphology of Q and ¢ is completely different although Q = V2 ¢




Energy Transfer in the Dissipative Coupling Model

switch gradient drive back on
run to “saturation” defined by statistical stationarity for spectral quantities
wide range of coupling strength, D = 0.01, 0.03, 0.1, 0.3, and 1.0
displayed for D = 0.1
T energy transfer directions hold for all D checked, only the robustness changes

D — oo is the “adiabatic limit” where J; — 0 and ¢ — p

t robustness of v - Vp proportional to about D~3/4



e Time evolution of the dissipative coupling model, for the nominal case of D = 0.1

energies transport
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e half squared amplitudes of p and ¢, denoted A,, and A,, respectively
T also ExB energy (Ug) and fluctuation free energy (U,,)
e transport caused by the turbulence, Q. = (pv}), for three values of the resolution

t for 642, 1282, and 2562 grid nodes, the values are 4.69 4+ 0.80 and 4.89 4+ 0.74 and 4.14 + 0.51



e Saturated state of the dissipative coupling model, for the nominal case of D = 0.1

t = 400.

t = 200. —— 400.

spectra @(%j y)
)

e averaged amplitude spectra for p, ¢, and the 2 ('n’, 'p’, and 'w’)
e morphology of ¢ and n, = p at t = 400
T close coupling at larger scales but differences on smaller scales, corresponding to the spectra

T the nonlinear interactions affecting p are stronger relative to the coupling at higher k|



e Energy and enstrophy transfer in the dissipative coupling model, with D = 0.1

U, transfer U, transfer W transfer
101 | . 10! | p 10! |
10° ; 4 10°F
107t L | 107t
107} 10° &k 10" 107 10° Kk
M o= 10.2 M = 105

e transfer is from k' to k, shown where positive
e results show local cascade: mostly 1/2 < k' /k < 2

e direct cascade for U,, and W, ... inverse cascade for Ug

cascade dynamics not changed by linear forcing




Energy Transfer: electromagnetic turbulence

low k

nonlinear

0 -

nonlinear

N o
‘R sink
///, \\

4

high k entire
spectrum
~ a unit
¢
‘\
sink

AR

\
N\
\

thermal gradient

k)

HO

DW: direction for J
determined by NL

(B Scott Phys Fluids B 1992, Plasma Phys Contr Fusion 1997)
(S Camargo et al Phys Plasmas 1995 and 1996)



Transport due to ExB Turbulence

the turbulence causes a finite average advective transport, in general ...

0=a.+Q Q= (5) Q= (57t
in a confined plasma, the equilibrium is maintained by a source
j{dVS:deQ:j{dvg—g
the time scales are very different; typical values: § ~ 1072
Teurh ~ 200 [;j Tsource ~ few x § 2 l;j

profiles evolve slowly, turbulence in quasistatic statistical equilibrium

it is a good approximation to consider
turbulence in the presence of a prescribed gradient




